Regularization of Orthonormal Vector Sets using Coupled PDE’s

نویسندگان

  • D. Tschumperlé
  • R. Deriche
چکیده

We address the problem of restoring, while preserving possible discontinuities, fields of noisy orthonormal vector sets, taking the orthonormal constraints explicitly into account. We develop a variational solution for the general case where each image feature may correspond to multiple n-D orthogonal vectors of unit norms. We first formulate the problem in a new variational framework, where discontinuities and orthonormal constraints are preserved by means of constrained minimization and -functions regularization, leading to a set of coupled anisotropic diffusion PDE’s. A geometric interpretation of the resulting equations, coming from the field of solid mechanics, is proposed for the 3D case. Two interesting restrictions of our framework are also tackled : the regularization of 3D rotation matrices and the Direction diffusion (the parallel with previous works is made). Finally, we present a number of denoising results and applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clifford Bundles: a Unifying Framework for Images(videos), Vector Fields and Orthonormal Frame Fields Regularization

The aim of this paper is to present a new framework for regularization by diffusion. The methods we develop in the sequel can be used to smooth nD images, nD videos, vector fields and orthonormal frame fields in any dimension.1 From a mathematical viewpoint, we deal with vector bundles over Riemannian manifolds and socalled generalized Laplacians. Sections are regularized from heat equations as...

متن کامل

Clifford Bundles: A Common Framework for Image, Vector Field, and Orthonormal Frame Field Regularization

The aim of this paper is to present a new framework for regularization by diffusion. The methods we develop in the sequel can be used to smooth multichannel images, multichannel image sequences (videos), vector fields and orthonormal frame fields in any dimension.1 From a mathematical viewpoint, we deal with vector bundles over Riemannian manifolds and socalled generalized Laplacians. Sections ...

متن کامل

Diffusion Tensor Regularization with Constraints Preservation

This paper deals with the problem of regularizing noisy fields of diffusion tensors, considered as symmetric and semi-positive definite n n matrices (as for instance 2D structure tensors or DT-MRI medical images). We first propose a simple anisotropic PDE-based scheme that acts directly on the matrix coefficients and preserve the semipositive constraint thanks to a specific reprojection step. T...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Anisotropic Diffusion PDE’s for Multi-Channel Image Regularization : Framework and Applications

We review recent methods based on diffusion PDE’s (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001